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The theoretical prediction that magnetic reconnection spontaneously drives turbulence has been supported by
magnetohydrodynamic (MHD) and kinetic simulations. While reconnection with externally driven turbulence
is accepted as an effective mechanism for particle acceleration, the acceleration during the reconnection with
self-driven turbulence is studied for the first time in this work. By using high-resolution 3D MHD simulations
of reconnection with self-generated turbulence, we inject test particles into the reconnection layer to study their
acceleration process. We find that the energy gain of the particles takes place when they bounce back and
forth between converging turbulent magnetic fields. The particles can be efficiently accelerated in self-driven
turbulent reconnection with the energy increase by about 3 orders of magnitude in the range of the box size. The
acceleration proceeds when the particle gyroradii become larger than the thickness of the reconnection layer.
We find that the acceleration in the direction perpendicular to the local magnetic field dominates over that in
the parallel direction. The energy spectrum of accelerated particles is time-dependent with a slope that evolves
toward -2.5. Our findings can have important implications for particle acceleration in high-energy astrophysical
environments.

I. INTRODUCTION

Almost all observed high-energy astrophysical processes indicate the existence of high-energy cosmic ray particles [e.g., 1, 2],
the origin of which is one of the most important but unsolved problems in space physics and astrophysics. From a theoretical
perspective, theories of three classical acceleration mechanisms, including stochastic acceleration (second-order Fermi), dif-
fusive shock acceleration (first-order Fermi), and magnetic reconnection acceleration, have been developed to understand the
observational phenomena in the solar wind and various astrophysical environments [see reviews by, e.g., 3–5]. The essence of a
particle’s acceleration is the interaction between (turbulent) magnetic fields and particles, such as gyroresonant interaction and
transit time damping [6–10], mirror interaction [11] and other non-resonant interactions [12–16], gradient drift and curvature
drift in non-uniform magnetic fields [4, 17, 18]. This work focuses on the magnetic reconnection acceleration of particles in the
presence of turbulence that has been actively studied in recent years [e.g., 19, hereafter LV99] and [20–29].

The theoretical studies of magnetic reconnection date back to the 1950s [30–32], with intensive efforts devoted to explaining
the reconnection rates indicated by observations [see 3, for a recent review]. Appealing to the ubiquitous turbulence as a trigger
and regulator of the reconnection process, LV99 proposed a 3D turbulent reconnection model describing a fast reconnection
process with a reconnection rate independent of micro-plasma effects. The fast reconnection of turbulent magnetic fields can
lead to a more efficient transfer of magnetic energy to the kinetic energy of the fluid. These predictions have been confirmed by
both non-relativistic [21, 33, 34] and relativistic [35] MHD turbulence simulations. The LV99 model makes the modern MHD
turbulence theory [36, hereafter GS95] self-consistent and predicts the rate of magnetic field diffusion in space that is consistent
with simulations [37, 38]. Very importantly, turbulent reconnection predicts that the classical magnetic flux-freezing theorem
[39] is violated in turbulent fluids [40].

Various astrophysical implications of the LV99 reconnection are reviewed in [3], including anomalous cosmic rays [41],
nonlinear turbulent dynamo [42], (first) star formation [43], gamma-ray bursts [44–46], microquasars [20, henceforth GL05],
active galactic nuclei [AGNs: 47, 48] and radio galaxies [12]. By studying emissions from accelerated particles, one can get
insight into the processes of turbulent reconnection.

Earlier studies on reconnection acceleration mostly focus on 2D reconnection models. [49] considered the 2D reconnection
and reported that the first-order Fermi acceleration can happen in this case. In the restricted 2D configuration, particles are
trapped within contracting magnetic islands, i.e., plasmoids, which can arise from the plasma tearing instability when a long
narrow current sheet is prescribed [see 50]. The trapping of particles within the islands limits the acceleration efficiency in 2D
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reconnection. Moreover, 2D magnetic islands are not tenable and susceptible to turbulence (given a sufficiently large system
size) in 3D, where 3D open-ended loops are expected. As shown by MHD and kinetic simulations [e.g., 23, 27, 28, 51, 52],
3D reconnection acceleration is more efficient than their 2D counterpart. In analogy to the classical diffusive shock acceleration
(first-order Fermi), where particles are confined in the vicinity of a shock, GL05 first proposed that a first-order Fermi process
operates within the 3D turbulent reconnection region. Particles are confined in the converging magnetic fluxes of opposite
polarity [e.g., see Fig. 1 in 53] and bounce back and forth between the reconnection-driven inflows. A more rigorous study
on turbulent reconnection acceleration is recently carried out by [29]. They found an efficient acceleration in the presence
of reconnection-driven turbulence and non-universal particle energy spectral indices depending on the reconnection rate. We
note that, unlike the shock acceleration, fluid compressibility [54] is not necessary for reconnection acceleration to happen.
The testing of the GL05 picture was performed by [55] using 3D turbulent reconnection simulations [21]. [55] provided the
first numerical demonstration of the volume-filling reconnection that happens in the 3D case. They further showed that the
reconnection acceleration is efficient in the presence of turbulence.

The injection mechanism of turbulence varies in different astrophysical environments, but in general, it can be divided into
externally driven turbulence and spontaneously driven one. For instance, supernova explosions [56, 57], merger events and AGN
feedback [58–60] and baroclinic forcing behind shock waves [61–63] are frequently also quoted by the sources of turbulence.
In addition, various instabilities such as magnetorotational instability in accretion disks [64] and kink instability of twisted flux
tubes in the solar corona [65] can also excite turbulence. Particularly, turbulence can be driven by magnetic reconnection itself
as suggested in LV99 and [66]. Numerical studies on reconnection-driven turbulence are very challenging because they require
high resolution and a long computational time to reach a steady state. Attempts including [67] for incompressible medium, and
[68] and [69] for compressible medium demonstrate the generation of turbulence by reconnection.

The dynamical evolution and statistical properties of reconnection-driven turbulence (initiated by stochastic noise) were studied
by [33]. They found that the reconnection produces a Kolmogorov-like spectrum of velocity fluctuations with the anisotropic
scaling following the relation 𝑙 ∥ ∝ 𝑙

2/3
⊥ predicted in GS95, where 𝑙 ∥ and 𝑙⊥ are the parallel and perpendicular scales of a turbulent

eddy with respect to the local magnetic field.1
Furthermore, [34] found that the Kelvin-Helmholtz instability dominates over the tearing instability for the generation of

turbulence in the 3D reconnection layer, while the tearing instability is only important at the initial stage of the reconnection. In
the absence of external driving, the reconnection-driven turbulence in 3D enables fast reconnection.

Our goal is to numerically study particle acceleration in 3D magnetic reconnection with reconnection-driven turbulence,
which has not been numerically investigated. By performing high-resolution MHD simulations, we will examine the effect of
reconnection-driven turbulence on reconnection acceleration and acceleration efficiency. In Section II, we describe the numerical
methods for reconnection simulations with reconnection-driven turbulence and test particle simulations. Section III presents our
numerical results for reconnection acceleration. Finally, we provide a discussion in Section IV and a summary in Section V.

II. SIMULATION METHODS

A. Reconnection simulations with reconnection-driven turbulence

A high-order shock-capturing Godunov-type code AMUN2 is adopted to solve a set of equations for isothermal compressible
magnetohydrodynamics

𝜕𝜌

𝜕𝑡
+ ∇ · (𝜌v) = 0, (1)

𝜕𝜌v
𝜕𝑡

+ ∇ ·
[
𝜌vv +

(
𝑐2

s 𝜌 + 𝐵2

8𝜋

)
𝐼 − 1

4𝜋
BB

]
=

𝜈𝜌

[
∇2v + 1

3
∇ (∇ · v)

]
,

(2)

𝜕B
𝜕𝑡

+ ∇ × E = 0, (3)

∇ · B = 0, (4)

1 The notion “local" means that the scaling of turbulent eddies is measured with respect to the local magnetic field in the direct vicinity of these eddies, rather
than with respect to the global mean magnetic field. This notion was absent in the original GS95 treatment, but introduced later in LV99 and [70]. The actual
notion of eddies in strong Alfvénic turbulence is based on the LV99 finding that the turbulent reconnection takes place over just one turnover of eddies.

2 https://bitbucket.org/amunteam/amun-code/
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where 𝜌 is the plasma density, v the fluid velocity, B the magnetic field, 𝑐s the isothermal sound speed, 𝜈 the viscosity coefficient,
and 𝐼 the identity matrix. With Ohm’s law, the electric field can be written as

E = −v × B + 𝜂 J, (5)

where J = ∇ × B is the current density and 𝜂 is the Ohmic resistivity coefficient. In addition, an isothermal equation of state is
used to supplement the above equations. The MHD equations (1)-(4) were integrated numerically using 3𝑡ℎ-order 4-stage Strong
Stability Preserving Runge-Kutta method [71], 7𝑡ℎ-order Compact Monotonicity Preserving interpolation [72] to reconstruct the
Riemann states, and the HLLD Riemann solver [73].

Our numerical simulations are performed in a 3D domain with physical dimensions of 𝐿𝑥 = 𝐿, 𝐿𝑦 = 4𝐿, and 𝐿𝑧 = 𝐿 (𝐿 = 1),
fixing the domain center at the origin of Cartesian coordinates. We consider periodic boundary conditions along the 𝑋 and 𝑍

axes and an open one along the 𝑌 axis. Uniform initial density is set to be 𝜌 = 1 in the upstream region, and within the current
sheet, its value increases to make the total pressure uniform in the entire domain. The initial antiparallel magnetic field with
the strength of 𝐵0 = 1 is set along the 𝑋 axis, with a single discontinuity of the 𝑋-component of the magnetic field placed in
the middle of the box on the 𝑋-𝑍 plane, and the guide field strength of 𝐵g = 0.1 along the 𝑍 axis.3 These settings result in the
dimensionless fluid velocity and the simulation time units to be [𝑣] = 𝑉A = 1 and [𝑡] = 𝑡A = 𝐿/𝑉A = 1, respectively. Since
the AMUN code runs with the normalized magnetic field multiplied by a factor

√
4𝜋, Alfvén velocity using the code units is

𝑉𝐴 = 𝐵0/
√
𝜌0. Furthermore, the initial random velocity field with an amplitude of 10−2 at the fixed wavenumber of 𝑘 = 32𝜋 is

represented by 100 Fourier modes of random phases and directions, being limited in the spatial region within the distance of 0.1
from the initial magnetic field discontinuity [see 33, for more details]. Besides, the isothermal sound speed is set to be 𝑐s = 1,
resulting in a plasma parameter of 𝛽 = 𝑝g/𝑝m ≈ 2. To control the effects of numerical diffusion, we set the viscosity 𝜈 and
resistivity 𝜂 coefficients to be 10−5. We terminate our simulation at the time of 𝑡r = 7.2𝑡A, the snapshot of which is adopted to
explore test particle acceleration.

B. Test particle simulations

The equation of motion for a charged particle is given by

𝑑

𝑑𝑡
(𝛾𝑚u) = 𝑞 (E + u × B) , (6)

where 𝛾 ≡
(
1 − 𝑢2/𝑐2)−1/2 is the Lorentz factor of relativistic particle, and 𝑐 is the speed of light. The symbols u, 𝑚, and 𝑞 are

the particle velocity, mass, and electric charge, respectively. We focus on the acceleration processes resulting from the motional
electric field −v × B, ignoring the possible acceleration from resistivity effects of the electric field, i.e., the last term in Equation
(5). It has been demonstrated that the Fermi-type acceleration by the motional electric field dominates over the acceleration by
non-ideal electric fields [78]. In our study, we make sure that the resistivity effects of the electric field do not enter, as 𝜂 could
also be from numerical resistivity. Therefore, Equation (6) is further rewritten as

𝑑

𝑑𝑡
(𝛾𝑚u) = 𝑞 [(u − v) × B] . (7)

With this equation, we integrate particle trajectories using the 8𝑡ℎ order embedded Dormand-Prince method [79] with an adaptive
time step based on an error estimator.4 The local values of the plasma velocity v and magnetic field B at each step of the
integration were obtained by cubic interpolation with the discontinuity detector based on a total variation diminishing limiter.

In our simulations, for our results not to be limited to a particular astrophysical system, all physical quantities are normalized
to be dimensionless, and the results are applicable to studying the acceleration of relativistic particles in the nonrelativistic
reconnection process. We consider the relativistic test particles with their speed close to the light speed 𝑐 that is larger than the
Alfvén speed 𝑉A by several orders of magnitude. Therefore, we have 𝑐 ≫ 𝑉A > 𝑣rec, where 𝑣rec is the velocity of turbulent

3 This work is limited to a single guide field strength. Note that recent kinetic scale simulations have claimed that the guide field plays a critical role in the
reconnection acceleration of particles [74–76]. However, MHD-scale turbulent reconnection simulations claimed that the contribution of the guide field does
not change the dynamics of magnetic reconnection and its reconnection rate [67, 77]. More confirmation is needed.

4 In terms of the precision of long-term integration, we explore different methods for integrating particle trajectories such as a simple functional iteration, the
implicit Gauss-Legendre method, and the explicit Runge-Kutta method. After taking into the numerical accuracy and calculation time account, we choose
the 8th-order explicit Runge-Kutta method by Dorman & Prince with step control and dense output, using a very small precise control parameter of 10−8 to
ensure high-precision numerical output. This method has a higher accuracy than the classic 4th-order explicit Runge-Kutta method and has also been used in
recent publications [80, 81]
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FIG. 1: 3D distributions of current densities (left column) and corresponding 2D imaging on the 𝑋-𝑌 plane (right column) at different times
𝑡r ≃0.5, 4.0 and 7.2𝑡A (from upper to lower rows) during the evolution of reconnection.

magnetic reconnection. Since for a nonrelativistic reconnection process, the reconnection timescale is longer than the Alfvén
wave crossing time (𝑡A), which is much longer than the crossing time of a relativistic particle, we adopt a single snapshot from
our reconnection simulation to perform the test particle simulations. In practice, with 10,000 protons as test particles that are
injected instantly into a snapshot at 𝑡r = 7.2𝑡A, we integrate the evolution equation of particles over 0.1 in units of 𝑡A.5

5 As in all numerical experiments, an optimal number of particles should be used. Our results presented below will not be changed with the number of particles
if this number exceeds 5,000. Moreover, we find that after 𝑡 = 6.0𝑡A, the particle acceleration from one snapshot provides a representative result for all
snapshots.
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FIG. 2: Left panel: the 3D trajectories of three test particles chosen from the test particle simulation. The plotted pentagrams indicate their
locations at 𝑡 = 0.1𝑡A. Right panel: the motions of particles in the direction of inflow directions (along the 𝑌 axis) as a function of time,
respectively corresponding to the particle trajectories shown in the left panel (one-to-one correspondence by the color of the curve). The
horizontal dotted lines indicate the estimated boundaries of the reconnection layer.

III. RECONNECTION ACCELERATION WITH RECONNECTION-DRIVEN TURBULENCE

A. Structures of turbulent reconnection layer

Before studying the acceleration of the test particles, we in this subsection first explore the evolution of the current sheet
structure. With a high-resolution simulation of 1024 × 4096 × 1024, we explore how the current sheet evolves during the
spontaneously driven turbulent reconnection process. At the selected three snapshots 𝑡r ≃0.5, 4.0 and 7.2 𝑡A, we present 3D
distributions of the current density (see left column of Figure 1) and 2D slices of current density on the 𝑋-𝑌 plane at 𝑍 = 0 (see
the right column of Figure 1). Here, the current density is obtained by J = ∇ × B. As seen, the current density with a noise-like
structure is evenly distributed in a sheet-like plate at the early stage of evolution (≃ 0.5𝑡A). It then begins to form high current
density clumps at 𝑡r ≃ 2.5𝑡A (not shown in the paper). When the system evolves to 𝑡r ≃ 4.0𝑡A, we see a very inhomogeneous
distribution of the current density. This is probably because the initial stochastic noise triggers various MHD instabilities (e.g.,
Kelvin-Helmholtz and tearing instabilities) that make the current sheet fragment. As the system evolves further, the current sheet
begins to thicken and forms a significant magnetic flux rope with a multi-scale complex structure at 𝑡r ≃ 5.0𝑡A (not shown).
With the periodic conditions set along the outflow directions, outflows do not leave the system, which leads to a continuous
accumulation of energy. At later times, the reconnection layer is slowly eating through the undisturbed fluid, and reconnection-
driven turbulence is fueled by the free energy of the oppositely directed magnetic fields. This will cause the current sheet to
slowly widen and increase the volume of the reconnection layer with a lower growth rate. The detailed statistical analysis of the
reconnection simulation demonstrates that MHD turbulence with Kolmogorov turbulent energy spectrum and scale-dependent
turbulence anisotropy (GS95, LV99) is well developed at 𝑡 ≳ 5𝑡A. Therefore, we stop our simulation at 𝑡r = 7.2𝑡A.

With a similar setup, [33] discussed the boundary effect on reconnection (see also [67] for periodic conditions in the three
directions). Recently, our reconnection-driven turbulence simulation by MHD-PIC considered a reflective boundary in the
direction perpendicular to the current sheet and found that a reflective boundary makes larger-scale reconnection structures [82].
Nevertheless, the problem of periodic boundary conditions will be further investigated and quantified in future work. As shown
in Figure 1, we observe that the evolution of stochastic reconnection leads to the formation of thickening regions in the current
density. This broadened reconnection layer over the range −0.1 ≲ 𝑌 ≲ 0.1 provides a favorable place for the rapid acceleration of
particles. The acceleration efficiency of particles in reconnection strongly depends on the reconnection rate, i.e., the inflow speed
driven by reconnection [29], which can be measured as the growth speed of the current layer width, i.e., 𝑣rec = 𝑑 △ /𝑑𝑡 ≃ 0.02𝑉A
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FIG. 3: Total momentum (left upper panel), its perpendicular (right upper panel), and parallel (left lower panel) components of a test particle
vs. the location of the particle in the 𝑌 direction. The inset in the left upper panel shows zoom-in. The initial and final positions of the particle
are marked in each panel. The vertical dashed lines indicate the estimated range of the reconnection layer, −0.1 ≲ 𝑌 ≲ 0.1. The right lower
panel indicates the gyroradius 𝑅g vs. 𝑡 of the test particle. The horizontal dashed, dash-dotted, and dotted lines correspond to the grid size,
the estimated thickness of the reconnection layer, and the box size, respectively. The green solid and dash-dotted lines show 𝑅g ∝ 𝑡2.8 and
𝑅g ∝ 𝑡1.0 as a reference, respectively.

at 𝑡r = 7.2𝑡A [see 33, 67, for more details]. Although the width of the reconnection layer increases constantly, the reconnection
rate almost remains its stable value, which is similar to the results in [33] and [67].
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B. Reconnection acceleration

1. Trajectory analysis of particles

With 3D data cubes taken from the above-mentioned reconnection simulation at the final snapshot of 7.2𝑡A, we perform
test particle simulations to study the acceleration of particles that interact with reconnecting turbulent magnetic fields. As an
example, the left panel of Figure 2 presents the trajectories of three test particles with the almost same initial location inside the
reconnection layer. As shown in this panel, the particles are confined in the vicinity of the reconnection region (−0.1 ≲ 𝑌 ≲ 0.1)
to gain their kinetic energy by repeatedly bouncing back and forth off the inflows.

The right panel of Figure 2 further illustrates the motions of particles in the direction of the𝑌 axis (along the inflow directions)
as a function of time, in which we also show two zoomed-in parts to illustrate the more details. The boundaries of the reconnection
layer are indicated by the horizontal dotted lines. It can be seen that with the increase of particle energy, the acceleration proceeds
with the particle moving beyond the reconnection layer after 𝑡 ≈ 0.005𝑡A.

2. Particle acceleration processes

When particles are confined within and near the reconnection layer, they are accelerated with continuous energy gain. As an
example, Figure 3 shows the total 𝑃 (left upper), perpendicular 𝑃⊥ (right upper), and parallel 𝑃∥ (left lower) momentum of a test
particle (normalized by 𝑚p𝑐, where 𝑚p is the proton mass) as a function of its location in the 𝑌 direction. The perpendicular
and parallel components of momentum are measured with respect to the local magnetic field. The acceleration during turbulent
reconnection leads to an energy increase of about 3 orders of magnitude in a zig-zag manner. The inset is a zoom-in to clearly
show that the particle gains energy via bouncing back and forth crossing the reconnection layer many times. As argued in [29],
the kinetic energy of the reconnection-driven inflows is transferred to particles via their repeated head-on collisions. The lower
right panel shows the distributions of the gyroradius of the particle, 𝑅g ∝ 𝑃⊥/|𝑞 |𝐵 ∝ 𝑡2.8, where 𝑃⊥ is the particle perpendicular
momentum. With the increase of particle energy, 𝑅g generally increases with time. Its large fluctuations are mainly caused by
both the large fluctuations of the magnetic fields (mainly 𝐵y and 𝐵z components) and velocities in the reconnection region.

The total 𝑃, perpendicular 𝑃⊥ and parallel 𝑃∥ momentum, and gyroradius 𝑅g of all 10,000 test particles as a function of
the time 𝑡 are shown in Figure 4, where the red thick solid lines represent the mean values and the color scales indicate their
distribution. In the right lower panel, the horizontal dotted and dashed lines indicate the box scale 𝐿 in the 𝑋 and 𝑍 directions, and
the grid size of ℎ = 𝐿/1024, respectively, while the blue dash-dotted line indicates the approximate thickness of the reconnection
layer. As shown, the momentum and gyroradius of particles all increase with time, roughly following ∝ 𝑡2.8, with the energy
increase by about 3 orders of magnitude in the range of box size. The increase of both parallel and perpendicular momentum of
particles is consistent with the theoretical expectation in [29] and previous simulations [e.g., 55, 83]. When the gyroradius of
particles is greater than the box size, we see a shallower power law of approximately 𝑃 ∝ 𝑡1.0 (𝑅g ∝ 𝑡1.2) due to our periodic
boundary conditions. During this stage, the gain of energy is due to a much slower drift acceleration caused by gradients of
large-scale magnetic fields in the perpendicular direction (see the right upper panel). The presence of a guide field allows the
particles to slightly accelerate in the parallel direction as well (see the left lower panel for 𝑃∥ ≃ 0.1𝑃⊥).

As shown in Figures 3 and 4, during the exponential growth phase with the power law of∝ 𝑡2.8, the gyroradius of the accelerated
particles becomes comparable to the size of the box. To confine the particles around the reconnection layer, the Larmor radius of
particles should be smaller than the box size 𝐿, where the maximum energy can be estimated by 𝐸max ∝ 𝑞𝐿𝐵. However, due to the
setting of periodic boundary conditions, the particles can be continuously accelerated with a lower acceleration efficiency (with
𝑅g ∝ 𝑡1.2) after 𝑅g ≳ 𝐿. We would like to stress that the energy increase by three orders of magnitude seen in the simulation is
limited by the box size, corresponding to three orders of magnitude of the particle gyroradius, beyond which the energy increase
is due to the consideration of periodic boundary conditions.

Our simulations show that particles with both 𝑅g smaller and larger than the thickness of the reconnection layer (∼ 0.2𝐿) can
be accelerated. In the former case, particles bounce back and forth within the reconnection layer, while in the latter case, particles
gyrate around the reconnection layer. Theoretical models for turbulent reconnection acceleration in these two different cases can
be found in [20, 29, 84] (see also Figure 2). The numerical demonstration has been carried out by MHD simulations for the
former case [55, 83, 85] and by kinetic simulations for the latter case [27, 28]. Here, we clearly see both cases in a self-driven
reconnection for the first time (to our knowledge).

3. Spectral energy distribution of accelerated particles

Spectral energy distributions of accelerated particles are plotted in Figure 5 at the integration time 𝑡 ≃ 0.00069𝑡A, 0.00109𝑡A,
0.00218𝑡A, 00275𝑡A, 0.00436𝑡A, 0.00690𝑡A, and 0.01000𝑡A, which correspond to the acceleration processes within and around
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FIG. 4: Same as Figure 3 but for 10,000 particles. The color scale indicates the particle distributions at different integration times in units of
𝑡A, and the red lines represent the mean values.

the reconnection layer. The upper panel of this figure shows the spectra of momentum components perpendicular and parallel to
the local magnetic field by the solid and dashed lines, respectively. Note that the particles are injected with an initial Gaussian
distribution of energies, which are decomposed into perpendicular and parallel components. With increasing integration time, as
a result of reconnection acceleration, particle energy spectra shift to higher and higher energies. Spectral continuously broadening
is not very clear as we use instant injection. As seen, the acceleration in the perpendicular direction dominates an increase of
particle energy only at an early time before about 0.002𝑡A. Most time, the acceleration in the parallel direction dominates the
energy increase.

The lower panel of Figure 5 presents the time evolution of the spectrum of total particle momentum. Most time the total
energy spectrum follows that of the perpendicular energy. The energy distribution of accelerated particles exhibits a non-thermal
tail which is estimated as a power-law distribution of 𝑁p (𝑃) ∝ 𝑃−𝛼, where the spectral index 𝛼 evolves from approximately 1.0
to 2.5. The slope 2.5 is consistent with the theoretical expectation in [29] for nonrelativistic reconnection acceleration with a
weak guide field [see also 20]. Here, we do not consider the escape of particles from the box in our simulations. This setup is
applicable to the case when the escape from the entire system happens much slower than the acceleration. Indeed, we observe
that during our simulation, particles are mainly confined in and around the reconnection layer (see Figure 2). So the escape from
the entire system is relatively slow. As we do not continuously inject new particles at low energies, with the acceleration of the
bulk population, the minimum energy and the peak of the energy distribution both move to higher and higher energies with the
increase of simulation time. During the exponential growth process of ∝ 𝑡2.8 that we are interested in, the energy particles can
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FIG. 5: Spectral energy distributions of particles accelerated in the self-driven turbulent reconnection at different particle integration times
in units of 𝑡A, for the perpendicular (solid lines) and parallel (dashed lines) components of the momentum (upper panel), and for the total
momentum (lower panel). In the upper panel, the same color represents the perpendicular and parallel distributions at the same integration
time.

reach is limited by our box size. As a result, it is difficult to see an extended power-law tail of the accelerated particles. During
the early time of the particle simulation, a power-law shape can be seen over approximately one order of magnitude in energies.

As here we deal with the acceleration process with spatial inhomogeneity (see Figure 1). The “escape” can happen locally
from a region with a higher level of turbulence and higher reconnection efficiency (and thus higher acceleration efficiency) to
a region with a lower level of turbulence and lower reconnection efficiency (and thus lower acceleration efficiency). This local
“escape” may affect the measured spectral shape. We note that the local “escape” can be time-dependent with the increase of
particle gyroradius from a value much smaller than the largest thickness of the reconnection layer to a value larger than it.

The particle energy spectra we obtained are similar to those obtained in other particle-in-cell (PIC) and MHD simulations
[e.g., 86–90]. The non-thermal power-law tail cannot further extend to higher energies. In realistic astrophysical systems with
a limited size, e.g., in the black hole X-ray binary jets, the direct solution of the Fokker Planck equation controlling electron
evolution also predicts a non-thermal tail with non-extending power-law features [91]. In the former case considered here, the
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smallest energy of particles increases with time. As a result, we see that in the late stage of particle acceleration, the spectral
distribution of particles becomes narrower as shown in Figure 5.

IV. DISCUSSION

In the framework of the externally driven turbulent reconnection, [88] demonstrated that charged particles trapped within
the reconnection layer experience many head-on collisions with contracting magnetic fields which significantly enhances the
acceleration rate. Differently, our present numerical work is an attempt to explore the properties of particle acceleration with
self-driven turbulent reconnection. It is noted that in the framework of the externally driven turbulent reconnection, particle
energy spectral distributions presented in [83] are similar to our current analysis. Although the understanding of CR acceleration
in various MHD turbulence settings has been discussed by different authors [18, 27, 78, 81, 87, 92–95], the acceleration by
self-driven turbulent reconnection is an insufficiently studied subject.

Tearing reconnection has been considered an alternative mechanism for the fast magnetic reconnection process. The particle
acceleration in magnetic islands (ropes) has been extensively studied using 2D PIC simulations of collisionless electron-ion or
electron-positron plasmas [e.g., 49, 86, 96–100], and also using 3D PIC simulations [e.g., 27, 87, 101–103]. It should be pointed
out that these studies can only probe particle acceleration at the kinetic scales of the plasma, i.e., a few hundredths of the skin
depth. The current difficulty in achieving sufficiently large length scales is the reason why the 3D PIC simulations do not observe
turbulent flow behavior in the reconnection layer [3]. On the other hand, some turbulence-related processes, such as flux-freezing
violation [40] and Richardson dispersion [104, 105] that follow turbulent reconnection theory (LV99), can not be explained in
the framework of the tearing reconnection. The numerical results of the turbulent reconnection provided in [34] demonstrate
that the tearing mode plays a role only at the early stage of reconnection. As the reconnection layer evolves in time, the tearing
instability is suppressed and the Kelvin–Helmholtz instability plays the dominant role in driving turbulence and initiating the
turbulent reconnection.

Compared with [33] in the case of externally driven turbulent reconnection, we find that in the present reconnection-driven
turbulence, the phase of exponential acceleration with an index of ∼ 2.8 shown in Figure 4 is similar to the earlier low-resolution
simulations with index approximately 2.7. This exponential acceleration process is related to the largest thickness of the
reconnection layer of ∼ 0.2𝐿. The turbulence driven by the reconnection in this paper has very different injection properties
compared to that of [33]. The former happens at a large scale by an external force, and the latter due to the action of the
reconnection itself has a different injection caused by the associated instabilities from the initial small-scale perturbations.

As turbulence regulates the reconnection rate, the reconnection rate with externally-driven turbulence and reconnection-driven
turbulence can be very different [33]. The efficiency of reconnection acceleration associated with the motional electric field
induced by inflows depends on the reconnection rate [29]. Therefore, we expect that the acceleration efficiency has dependent
on the turbulence-driving mechanism in reconnection. Despite those differences, we find that the overall acceleration process is
very similar in terms of energy growth. As a result, reconnection-driven turbulence can effectively accelerate particles.

We have explored whether particle acceleration takes place rather than studied the evolution of the spectrum with the evolution
of the turbulent reconnection layer. For this purpose, the snapshot of the simulations is reasonable. Note that the frozen-box
approximation in 2D MHD simulation has been claimed to lead to a super-Fermi acceleration [106]. In the case of a 3D
simulation, whether there is an artificial super-Fermi acceleration requires specialized research in the future. As for reconnection
acceleration, it would be more desirable to self-consistently explore the acceleration of particles together with the co-evolution
of fluids, as done by e.g., [92] and [93] for particle acceleration in MHD turbulence. In general, the PIC and MHD simulations
are complementary for studying particle accelerations. The obvious advantage of MHD simulations is that they can simulate
turbulent reconnection on macroscopic scales which is challenging with the PIC.

V. SUMMARY

We have numerically studied for the first time particle acceleration in the magnetic reconnection with reconnection-driven
turbulence.6 Our research confirmed the theoretical picture proposed by [20] and further developed and quantified in [29] that the
particles can be efficiently accelerated within the turbulent reconnection layer via bouncing back and forth between converging
magnetic fields. The current numerical study with high-resolution simulations on reconnection acceleration with self-driven
turbulence extends earlier numerical studies with low resolution and externally driven turbulence [55, 83, 88].

The main results are summarized as follows:

6 Around the same time, [82] used an MHD-PIC method to simulate reconnection-driven turbulence and turbulent reconnection acceleration of particles. They
found that particles can be efficiently accelerated in reconnection-driven turbulence.
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• The self-driven turbulence is important not only for enabling the fast turbulent reconnection but also for enabling the particle
acceleration in the turbulence-broadened reconnection layer, with the energy gain coming from the kinetic energy of the
reconnection-driven inflows. Therefore, the acceleration efficiency is expected to strongly depend on the reconnection rate.

• We found that the acceleration in the direction perpendicular to the local magnetic fields dominates that in the parallel
direction, which is consistent with the theoretical expectation in [29]. The particle energy increases with time by about
3 orders of magnitude in the range of the box size and approximately follows the scaling of 𝑃 ∝ 𝑡2.8 before 𝑡 ≃ 0.01𝑡A.
Given periodic boundary conditions, the particle energy can be increased constantly with the increase of simulation time
and approximately follows the scaling of 𝑃 ∝ 𝑡1.0.

• We demonstrate the reconnection acceleration of particles with their gyroradii both smaller and larger than the thickness
of the reconnection layer. The latter case was first theoretically predicted by [84].

• The energy spectra of the accelerated particles present the non-thermal power-law tail, 𝑁p (𝑃) ∝ 𝑃−𝛼, with 𝛼 evolving
from ∼ 1 to ∼ 2.5. The upper limit slope ∼ 2.5 is consistent with the theoretical expectation in [29] for nonrelativistic
reconnection acceleration with a weak guide field.

Our current study demonstrated efficient particle acceleration in self-driven turbulent reconnection. It has important implica-
tions on a wide range of astrophysical problems, including reconnection acceleration in e.g., accretion discs, jets, and the origin
of high-energy cosmic rays.
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